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Abstract 

 

Natural discontinuities are known to play a key role in the stability of rock masses. However, it is a non-

trivial task to estimate the shear strength of large discontinuities. Because of the inherent complexity to 

access to the full surface of the large in-situ discontinuities, researchers or engineers tend to work on 

small-scale specimens. As a consequence, the results are often plagued by the well-known scale effect. A 

new approach is here proposed to predict shear strength of discontinuities. This approach has the potential 

to avoid the scale effect. The rationale of the approach is as follows: a major parameter that governs the 

shear strength of a discontinuity within a rock mass is roughness, which can be accounted for by 

surveying the discontinuity surface. However, this is typically not possible for discontinuities contained 

within the rock mass where only traces are visible. For natural surfaces, it can be assumed that traces are, 

to some extent, representative of the surface. It is here proposed to use the available 2D information (from 

a visible trace, referred to as a seed trace) and a random field model to create a large number of synthetic 

surfaces (3D datasets). The shear strength of each synthetic surface can then be estimated using a semi-

analytical model. By using a large number of synthetic surfaces and a Monte Carlo strategy, a meaningful 

shear strength distribution can be obtained. This paper presents the validation of the semi analytical 

mechanistic model required to support the new approach for prediction of discontinuity shear strength. 

The model can predict both peak and residual shear strength. The second part of the paper lays the 

foundation of a random field model to support the creation of synthetic surfaces having statistical 

properties in line with those of the data of the seed trace. The paper concludes that it is possible to obtain 

a reasonable estimate of peak and residual shear strength of the discontinuities tested from the 

information from a single trace, without having access to the whole surface. 

 

Keywords: rock joint, discontinuity, shear strength, random field, stochastic, scale effect 
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Nomenclature 
 
x, y, z Coordinates of points on the discontinuity surface 
Dx spatial increment in direction x 
c Material cohesion (obtained from triaxial tests) 
f Material friction angle (obtained from triaxial tests) 
f� basic friction angle 
mi  Hoek-Brown strength parameter 
sci Hoek-Brown strength parameter 
s1 major principal stress 
 s3  minor principal stress 
bapp_i apparent dip of facet i 
𝑛"#  unit vector normal to facet i 
𝑠̅ unit vector indicating the shear direction 
b* variable used to identify active facets 
Ncf total number of contributing facets at a given value of b* 
Ai facet area 
Aip facet area projected on the xy plane 
Atot total discontinuity area 
𝜎'()*'_, local vertical normal stress acting on facet i 
fsliding_i local horizontal force required to slide on facet i 
fshear_i local horizontal force required to shear facet i 
Fmacro vertical force exerted on the whole discontinuity 
flocal_i  local vertical force exerted on facet i 
fpeak peak shear force predicted by the model 
fresidual residual shear force predicted by the model 
t shear stress 
tp peak shear strength 
tres residual shear strength 
tp-predicted peak shear strength predicted by the model 
tp-exp experimentally measured peak shear strength 
tres-predicted residual shear strength predicted by the model 
tres-exp experimentally measured residual shear strength 
<tp> mean peak shear strength 
<tres> mean residual shear strength 
r correlation coefficient 
q correlation length 
d distance between two discrete data 
si standard deviation of gradients 
sz standard deviation of heights 
sz2 variance of heights 
ix gradient in direction x 
iy gradient in direction y 
JRC Joint Roughness Coefficient 
DZ difference in surface heights between successive measurements 
zmodel surface height predicted by the model 
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zexp experimental value of surface height  
dn normal displacement 
ds tangential displacement 
sno initial normal stress applied to the specimen during shear test at 

constant normal force 
sn normal stress applied to the specimen during shear test at 

constant normal stress or normal stress applied to the specimen at 
peak shear strength (for tests under constant normal force) 
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1. Introduction 

 

It has been long recognised that the hydro-mechanical behaviour of a rock mass is strongly influenced by 

the presence of discontinuities (Goodman, 1989; Brady and Brown, 1985). Figure 1 is a clear illustration 

of the problem. The photograph represents a fractured rock mass along the coastal fringe in the vicinity of 

Newcastle, Australia, where fallen blocks are clearly visible. These blocks have detached along horizontal 

and sub-vertical discontinuities, which constitute weaknesses within the rock mass. Assessing the 

stability of such blocks, and to some extent, that of the rock mass, necessitates an estimate of the shear 

strength of the discontinuities.  

 

FIGURE 1 

 

The shear strength of rock joints has been the subject of significant attention for several decades. 

Researchers have investigated key factors such as the mechanical response (Barton, 1976; Bandis et al., 

1983; Barton et al., 1985; Zhao, 1996; Johnston and Kodikara, 1994); the scale effect (Barton and Bandis, 

1980; Fardin et al., 2001, 2004; Vallier et al., 2010); the hydro-mechanical couplings (Whiterspoon et al., 

1980; Gale, 1982; Gale and Raven, 1985; Brown, 1987; Esaki et al., 1999, Indraratna and Ranjith, 2001; 

Lee and Cho, 2002; Koyama et al., 2006; Giacomini et al., 2008); the phenomenon of asperity 

degradation (Hutson and Dowing, 1990; Boulon et al., 1993); and the effects of filling and boundary 

conditions (Ladanyi and Archambault, 1977, Indraratna et al., 1998; Indraratna et al., 2014; de Toledo 

and de Freitas, 1993). Of all the factors controlling the behaviour of rock discontinuities, roughness is one 

of the most critical. Extensive effort has been spent characterizing surface roughness via classical 

tribology, geostatistical approaches (Ferrero and Giani, 1990; Tse and Cruden, 1979; Marache et al., 

2002), fractal theory (Seidel and Haberfield, 1995; Carr and Warriner, 1989) and empirical methods 

(Barton and Choubey, 1977). To date, there is no consensus on the most appropriate way to characterize 
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joint roughness, although the Joint Roughness Coefficient (JRC) defined by Barton and Choubey (1977) 

appears to be the most used roughness descriptor.  

In parallel to experimental investigations, significant progress has been made on the modelling front. 

From the pioneering works of Patton (1966) and Barton (1976), a number of constitutive laws or 

mechanistic models have been proposed to predict the behaviour of rock joints (e.g. Plesha, 1987; 

Haberfield and Johnston, 1993; Seidel and Haberfield, 2002; Vallier et al., 2010, Zandarin et al., 2013). 

Recently, a number of newer sophisticated empirical models have been proposed in the literature (e.g. 

Grasselli and Egger, 2003, Yang et al., 2016). 

 

The substantial progress in computational power that has occurred in the past decades has seen a number 

of models of rock joints being implemented in finite elements (Selvadurai and Yu, 2005, Gens et al., 

1990), discrete elements (Cundall, 2000; Bahaaddini et al., 2013, Lambert et al., 2010) or hydrid finite-

discrete elements (Karami and Stead, 2008; Grasselli et al., 2014). Although current numerical models do 

offer a number of advantages, they also suffer from inherent limitations: capturing asperity degradation 

remains a challenge, computational times are still high and, most importantly, an accurate numerical 

simulation is only possible if the surface morphology is available. This encourages the modelling of 

relatively small specimens, as large joint surfaces are typical not available in situ (unless a block has 

already fallen, which defeats the purpose of shear strength prediction).  

 

With numerical models and laboratory tests mainly pertaining to small rock specimens, shear strength 

results are not directly transferable to a large scale, because of the well known “scale effect” (Barton and 

Bandis, 1980). To date, although knowledge on rock joints has advanced significantly on multiple fronts, 

the scale effect remains a challenge to understand or predict. Despite many attempts to address the scale 

effect, either via fractal approaches (Vallier et al., 2010, Li et al., 2016; Giacomini et al., 2008) or 

experimental correlations (Bandis et al., 1981), as far as the authors know, there is still no consensual or 
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practical method available in the literature.  Working directly at the relevant scale for engineering 

purposes is not trivial and there is currently no satisfactory method to estimate the shear strength of a 

large in situ discontinuity. Researchers and engineers often resort to the Joint Roughness Coefficient 

(JRC) defined by Barton and Choubey (1977) and its associated empirical shear behaviour model. 

However, this is largely due to convenience and a lack of a reliable alternative. Barton himself recognises 

that there has been some confusion about his model (Barton, 2013). Furthermore, the JRC is known to be 

scale dependent (it is defined on a 10 cm length) and its value depends on the method chosen to ascertain 

it, i.e. Barton’s comb, statistical correlation (e.g. via Z2) or tilt test. 

 

The research presented in this paper proposes an alternative to the traditional deterministic approach and 

tackles the issue of shear strength from a stochastic perspective and using a random field model, with the 

possibility to apply it at a large (field) scale. Stochastic analysis per se is not new in rock mechanics: it is 

a strategy that has been used to create discrete fracture networks (e.g. Lambert et al., 2012; Xu and 

Dowd, 2014; Noorian-Bidgoli and Jing, 2015), to reproduce some types of rough joint surfaces (Lanaro, 

2000) and to distribute flaws within a rock matrix (Krumbholz et al., 2014). However, as far as the 

authors are aware, there has been no attempt, to date, to predict shear strength of discontinuities from a 

stochastic perspective. 

 

This paper includes two parts. The description and validation of a new semi-analytical model that can 

predict peak and residual shear strength of a discontinuity is first presented. Unlike most existing models, 

this mechanistic model is simple to implement and runs in a matter of seconds, which implies that a large 

number of simulations, compatible with Monte Carlo techniques, is possible in a reasonable time. 

Although the model is inspired by the work of Huang et al. (2002), there are a number of novel and 

important aspects in the work presented herein: the model handles real 3D surfaces, as opposed to 2D 
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idealised ones (e.g. saw-tooth), the facets are smaller than the asperities, which has implications on the 

way the whole asperity shearing is modelled and the model predicts both peak and residual shear strength.  

 

The second part of the paper lays the foundation for the new stochastic approach for rock joints. It 

presents the application of a random field model to the prediction of shear strength. As it is of utmost 

importance to first establish a rigorous framework, the research first pertains to laboratory scale 

specimens under controlled conditions, not large-scale discontinuities. Working under controlled 

conditions allows defining the influence of key parameters of the random field model and identify which 

roughness descriptor is the most suited to this new approach. At this stage, prediction of shear strength of 

full-scale discontinuities, with their inherent complexities such as filling, weathering, persistence, 

opening and pore pressure, has not yet been attempted. Yet, it is believed that this approach can be 

applied to large in-situ discontinuities.  

 

 

 

 

2. Rationale of the new approach for discontinuity shear strength prediction 

 

Roughness is one of the key parameters that govern the shear strength of a discontinuity and that is 

usually captured by accurately surveying a discontinuity surface. However, such survey is not possible for 

surfaces contained within a rock mass and for which only traces are visible. For natural surfaces, it can be 

assumed that traces are, to some extent, representative of the non-accessible surface.  The idea of the new 

approach is to use the available information directly at the discontinuity scale, from the visible traces 

(here called seed traces), to support the creation of a large number of synthetic surfaces (3D) via a 

random field model (Vanmarcke, 1983; Fenton, 1990; Fenton and Griffiths, 2008). The random field 
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model relies on the statistics of the input dataset (i.e. seed trace) to produce a random data field of similar 

statistical characteristics, namely the synthetic surfaces that are possible representations of the real 

discontinuity surface.  

In a next step, a distribution of strength is obtained by predicting the shear strength of all these synthetic 

surfaces. Note that the prediction could be achieved via any shear strength model but, because a large 

number of surfaces should be tested to reach a statistically sound result, it is important to use a time 

efficient model. Here, a semi-analytical model has been developed to support the validation of the new 

stochastic approach for shear strength prediction. Figure 2 summarizes the key points of the new 

approach. 

 

 

FIGURE 2 

 

 

3. Description of the semi analytical model for shear strength 

This section details the key aspects of the model. Explanations are supported by a flow chart (Figure 3) 

and schematics (Figures 4, 5 and 6). 

 

3.1 General principle 

 

The key idea of the model is to add the contribution of all asperities that are mobilised during shearing 

(referred to as “active” or “contributing” asperities). The concept of active asperities derives from the fact 

that when a joint dilates during shearing, dilation occurs along the steepest asperities, leading to a slight 

opening of the interface and a redistribution of the load. These active asperities are then sheared off and 

the load is redistributed onto other asperities that will then be sheared off. This process is repeated until 
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no more shearing occurs. The rest of the section will show that such progressive shearing process is 

captured by the model and is reflected in a progressive modification of the surface geometry.  

 

3.2 Model inputs 

 

The surface data, organised in a gridded xyz matrix (i.e. with a constant and equal step long x and y 

directions), constitutes one of the inputs of the model. The joint is assumed to be perfectly matching. 

Shearing occurs along the xy plane and z represents the distance from the xy plane. Note that, by 

convention, the lowest point of the surface is allocated a value of z=0 mm. Other model inputs are the 

shearing direction (within the xy plane), the value of normal stress and the material strength parameters (c 

and f for Mohr Coulomb or mi and sci for Hoek-Brown). Note that the model relies on a Mohr Coulomb 

criterion to predict local shearing of asperities. If Hoek-Brown parameters are entered, equivalent friction 

angle and cohesion will be defined as:   

sin𝜙 = 234
254

      [1] 

and  

𝑐 = 789∙(43<=>?)
A∙BC<	?

      [2] 

where K=ds1/d s3 with s1 the major principal stress and  s3 the minor principal stress. 

All the inputs are reported at the beginning of the flow chart (Figure 3). 

 

FIGURE 3 

 

 

3.3 Identifying the active facets  

The first step of the model (step 1 in Figure 3) consists of triangulating the surface to create facets, as 

illustrated in Figure 4. Note that the surface in Figure 4 only has a data point every 1.5 mm (in each 
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direction) so that the facets are clearly visible. The surfaces used for the model actually have one data 

point every 0.5 mm in each direction. The concept of apparent dip, defined by Grasselli (2006), is used to 

indicate how steep the facets are with respect to the shearing direction and, hence, whether they are active 

or not. The apparent dip of facet i (bapp_i ) is calculated as:  

 

𝛽*FF_, = 	𝑎𝑐𝑜𝑠(𝑛I,. 𝑠̅) − 90      [3] 

 

where 𝑛"#  is the unit vector normal to facet i and 𝑠̅ is the unit vector indicating the shear direction in the 

discontinuity plane (i.e. xy plane). (𝑛III,. 𝑠̅) is the dot product of both vectors. In the following, the shearing 

direction in the xy plane will be referred to as “horizontal”. 

 

Step 3 to step 11 of Figure 3 define the loop where the model progressively identifies all active facets, 

from the steepest and decreasing in steepness, and computes their contribution to shear resistance. The 

loop uses the test variable b* which progressively decreases from the maximum apparent dip of all facets, 

towards zero in 0.1 decrements. At each decrement (i.e. each value of b*), all facets having an apparent 

dip (bapp_i) larger than or equal to b* are considered active and can possibly be sheared. The loop on b* 

stops when no more shearing occurs (this will be detailed in the next section). 
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FIGURE 4 

 

 

 

3.4 Computing shearing and sliding forces 

The model assumes that all active facets, regardless of their apparent dip, are in contact. The justification 

of this assumption will be given in section 2.6. As a result, the vertical force exerted on the whole 

discontinuity (Fmacro) is uniformly distributed amongst all active facets that are subjected to a local 

vertical force flocal_i equal to: 

𝑓'()*'_, =
OPQ8RS
T8U

       [4] 

where Ncf is the total number of contributing facets at a given decrement of b* (see Figure 5a).  

 

FIGURE 5 

 

 

The local vertical normal stress is then estimated for each contributing facet as:  

 

𝜎'()*'_, =
VWS8QW_9
X9Y

       [5] 

where Aip is the area of the facet projected on the xy plane (see Figure 5b). Note that, although a relative 

tangential displacement is shown in Figure 5a in order to explain why only the active facets are in 

contact, the model does not account for any displacement. As a consequence, it is considered that contact 

occurs over whole active facets, not only partially as depicted in Figure 5a. 
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Equation [5] is associated to Step 7 in the algorithm of Figure 3. As shown in Figure 5a, there can be 

several active facets, and hence several points of contact, at any decrement of b*.  

 

Estimating the contribution of each active facet to shear resistance begins with computing the local 

horizontal force required to slide on the facet (fsliding_i, acting on Ai) and the local horizontal force required 

to shear the facet along a horizontal plane (fshear_i acting on Aip). Indeed, two scenarios are here 

considered: a facet of the top wall can slide on its bottom counter part, along surface Ai, or the bottom 

facet can be sheared. In this case, it is assumed that shearing occurs along the base of the facet, along a 

horizontal plane, as this minimizes the shear resistance (over surface Aip, see Figure 5b). fsliding_i, and  

fshear_i are given by equations [6] and [7]:  

𝑓Z',[,\]_, = 𝑓'()*'_, ∙ tan	(𝜙` + 𝛽*FF_,)     [6] 

 

𝑓Zbc*d_, = 𝐴,F ∙ f𝑐 + 𝜎'()*'_, ∙ tan	(𝜙)g     [7] 

 

where bapp_i is the facet apparent dip, f is the Mohr Coulomb friction angle of the material, c is the 

cohesion, fb is the basic friction angle, Aip is the area of the facet projected on the xy plane (see Figure 

5b) and slocal_i is the local vertical stress (along z axis) acting on facet i (see Equation [5]).  

 

Local shearing of the facet will only occur if the shear resistance is lower than the sliding resistance i.e. 

fshear_i ≤ fsliding_i (see step 9 of the flow chart in Figure 3).  

 

Shearing tends to prevail over sliding at the beginning of the iterations, when the facets are steep enough. 

As progressive shearing takes place, the asperities flatten (process to be detailed in the next section) until 

a point where sliding prevails over shearing and the iterations stop.  

 



 14 

3.5 Progressive modification of asperity geometry  

 

The surface geometry is only modified if shearing of facets takes place. Although the shear resistance is 

calculated along the horizontal plane corresponding to the base of the facet (equation [7]), physical 

shearing of the facet is imposed along a plane oriented at b*. It is an assumption of the model, which 

allows the progressive shearing of facets and avoids unrealistically flat surfaces at the end of the process. 

Each time a facet is sheared, a step is created at the junction with adjacent facet (see Figures 6a and 6b). 

Such steps are not commonly observed after shearing, so the strategy employed here is to correct the 

geometry as per Figure 6c. Adjusting points of the surface can locally increase the apparent dip of some 

facets (e.g. facets 2 and 5 in Figure 6c) that can become active and be sheared. After a number of 

iterations, the apparent dip has reduced enough that sliding becomes predominant over shearing of the 

facets (Figure 6d) and the iterations stop. 

 

FIGURE 6 

 

 

3.6 Model outputs 

 

The model predicts the peak shear strength and the sheared surface geometry, from which it can estimate 

the residual shear strength. As stated in section 3.4, the iterations on b* stop when it takes less force to 

slide over the active facets than to shear them (step 9 in flow chart in Figure 3). At that stage, the 

contribution of all active facets is only frictional and is calculated by Equation [6]. The peak shear force 

fpeak is the sum of the contribution of all active facets (step 12):  

 

𝑓Fc*h = ∑ 𝑓Z',[,\]_, =
T8U
,j4 ∑ 𝑓'()*'_, ∙ tan	(𝜙` + 𝛽*FF_,)

T8U
,j4     [8] 
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where is fsliding_i is the local horizontal force required to slide over active facet i and Ncf is the total number 

of active facets for a given value of b*. The peak shear strength tp-predicted is simply the peak shear force 

over the total discontinuity area (Atot equal to lx per ly, see Figure 5a):  

  

tp-predicted = fpeak /Atot        [9] 

 

Appendix A provides an example of calculation of shear strength for the last two decrements pertaining to 

the surface showed in Figure 6a.  

 

The residual shear strength is calculated from the peak shear force by considering that the difference 

between peak and residual forces is the cohesive contribution of all sheared asperities: 

 

𝑓dcZ,[k*' = 𝑓Fc*h − 𝑐 ∙ 𝑁)V ∙ 𝐴,F     [10] 

 

where fpeak is estimated as per Equation [8], c is the material cohesion, Ncf is the total number of active 

facets and Aip is the facet area projected on the xy plane (see Figure 5b). The residual shear strength is 

then expressed as:  

 

𝜏dcZ3Fdc[,)nc[ =
VRop9qrQW
XsSs

      [11] 

 

As the value of b*  is progressively reduced, the sliding force reduces (it gets easier to slide on facets) 

and the shearing force increases (more facets are being sheared) until both forces converge, as illustrated 

in Figure 7.  
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FIGURE 7 

 

4. Description of the random field model for natural discontinuities 

A random field model is a probabilistic model that permits the generation of random dataset from an 

initial dataset. Such model does more than simply producing data following a given distribution; it allows 

some degree of correlation between the data points, usually as a function of the distance separating the 

points (Fenton and Griffiths, 2008). In other words, the data points modelled are not independent from 

one another. The spatial correlation is achieved via the so-called correlation length. The Local Average 

Subdivision (LAS) algorithm developed by Fenton and Vanmarcke (1990) was here used to generate 

random but correlated data.  

 

It is possible to create a random surface by generating a random field of asperity heights (most intuitive 

parameter to describe a surface) or a field of gradients (parameter controlling the shear strength in the 

analytical model). Decision as to which variable is to be modelled should be made after due consideration 

of the two following points:   

 

1. It will be shown in a later section that, for the surfaces tested in this research, the asperity heights 

distribution does not follow any known distribution and cannot be mathematically defined. In 

contrast, the distribution of gradients was found to be approximately normal for most traces. 

Considering that the distribution of input data has to be mathematically defined in order to apply 

the random field model, it seems more appropriate to create a random field of gradients rather 

than a random field of asperities.  

2. Creating a random surface from gradients poses some issues. Although integrating the gradients of 

a trace along direction x yields the relative height of all points of the trace, an initial height has to 

be arbitrarily selected. This process can be repeated for all parallel traces of the surface, i.e. all 
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traces in direction x, in order to generate the height field. However, for each trace, a decision has 

to be made on the initial height and there is no guarantee that the resulting gradient distribution in 

the perpendicular direction (y) would be realistic, since all the traces have been reconstructed 

independently from one another.  

 

In short, modelling gradients seems more correct but reconstructing a surface from gradients is difficult. 

Bearing in mind that the objective of the random field model is to create a field having a Gaussian 

distribution of gradients, the following solution was adopted here: a random field of heights was created 

with the assumption that the data follows a normal distribution (with mean and standard deviation 

corresponding to those of the dataset). As a consequence, the derivative of the field created (i.e. gradients) 

does also follow a normal distribution. The points mentioned above are then reconciled. 

 

The random field model requires the definition of a correlation coefficient (r), which is a function of the 

correlation length (q) and the distance between two points (d). A Gaussian correlation formulation, which 

is common in geotechnical engineering (Fenton and Griffiths, 2008), has been used here:  

 

𝜌(𝑑) = 𝑒3w∙x
q
yz
{

      [12] 

 

Equation [12] describes how the degree of correlation between two points, quantified by r, decreases as 

the distance between the points (d) increases. The rate at which the correlation coefficient r decreases is 

governed by the correlation length q, defined as:  

 

 𝜃 = Δ𝑥 ∙ �
3w

'\�43�{x
��∙�9
��

z
{
�
     [13] 
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where si is the standard deviation of gradients (gradients are defined in Appendix B), sz is the standard 

deviation of heights and Dx is spatial increment in direction x. The reader can refer to Appendix B for the 

full derivation of q. 

 

Note that a correlation length can be estimated for any dataset, i.e. for the whole surface or for each trace. 

Finally, an assumption of roughness isotropy was made, which implies that the value of correlation length 

estimated via Equation [13] is considered to be isotropic. It is beyond the scope of the present paper to 

implement roughness anisotropy in the random field model. 

 

5. Experimental facilities and experimental program 

5.1 Materials and discontinuities 

Three natural discontinuities, of different roughness, coming from sedimentary rocks of the Hunter 

Valley (NSW, Australia) were selected for this study. Measurements with Barton’s comb returned JRC 

values of 2-4, 8-10 and 16-18 for the three surfaces. In the following, the smooth, medium and rough 

surfaces will be referred to as S, M and R, respectively. Moulds of each natural surface were created 

using Silastic polymer in order to produce replicas and conduct multiple tests on the same morphology. 

The replicas were made of a mortar containing 14% of water, 30% of cement and 56% of the fraction 

passing the 0.6 mm sieve of medium–grained silica sand from Stockton beach, NSW, Australia. The two 

walls of the discontinuities were created by casting some mortar (referred to as part A) against the 

original surface and then casting some mortar against part A in order to obtain a perfectly matching part 

B. All shear tests were conducted after a week of curing in a fog room, time after which mortar specimens 

were tested under unconfined compression and triaxial compression (as per 1978 ISRM recommended 

method, length to diameter ratio of 2.5) and for basic friction angle (following ISRM recommended 

method). Relevant material properties are provided in Table 1.  
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Table 1: Relevant properties of the mortar used to create the replicas. St dev: standard deviation. 

Unconfined compressive 

strength [MPa] 

Basic friction 

angle [°] 

Apparent 

cohesion [MPa] 

Friction 

angle [°] 

mi (from Hoek 

Brown criterion) 

Mean: 39.67 

St dev: 5.47 

Mean: 35.30 

St dev: 0.19 

4.74 58.1 35.2 

 

FIGURE 8 

 

 

4.2 Photogrammetry 

Applying and validating the new analytical model requires capturing the morphology of each surface, pre 

and post shearing, which was achieved via photogrammetry. The specimens were placed on a rotating 

table with a camera (Canon 7D EOS equipped with a 50 mm lens) located about one meter away from the 

specimen. A total of 80 rotations were imparted to the specimen and, each time, a photograph was taken. 

The Agisoft Photoscan software was used to process the data and create a gridded data file. Figure 8 

shows the contour map of the surfaces considered here and the corresponding replicas. 

The accuracy of measurement was estimated to 25 μm and a repeatability exercise, conducted on surface 

M, shows a normally distributed error with a standard deviation of about 0.08 mm and an average around 

0 mm (Figure 9).  

 

FIGURE 9 

 

4. Statistical analysis of surfaces 
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A statistical analysis of the three surfaces was conducted in order to identify the adequate descriptors of 

surface morphology that will underpin the rigorous transfer of 2D dataset (seed trace) towards a 3D 

random field (synthetic surface) via the random field model. The most intuitive parameter to describe the 

surface morphology is the height (noted z, in mm) of every point of the surface. However, Figure 10 

shows that the histogram of height values does not follow any specific distribution, making it difficult to 

mathematically define the initial dataset and, hence, the target statistical properties of the synthetic 

surfaces.  

 

FIGURE 10 

 

In contrast, visual inspection of the histograms gradients along the x-axis (axis defined in Figure 8) 

suggests that the distribution of gradients (defined by equations [B.1] and [B.2] of Appendix B) is close 

to Gaussian (Figure 11). For the sake of conciseness, results pertaining to gradients along y-axis are not 

shown but their distribution was also found to be Gaussian.  

 

FIGURE 11 

It is here relevant to consider that each trace has its own mean and standard deviation of gradients and 

heights. These parameters differ from trace to trace, as demonstrated by Figure 12.  

 

FIGURE 12 

 

The variability of sample mean and sample standard deviation of gradient values from trace to trace (as 

depicted in Figure 12) will translate into a variability in sample correlation length, calculated according to 

Equation [13], as shown in Figure 13.  
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FIGURE 13 

 

Figure 13 raises the question of the influence of the properties of the seed trace on the estimate of shear 

strength. Since any trace of the surface could be the seed trace, it is important to assess to what extent the 

outcome of the prediction depends on the selection of the seed trace. This will be covered in a later 

section. 

 

4.3 Direct Shear Machines and experimental program 

 

The shear tests were conducted under normal stress values ranging from 0.1 to 6 MPa. Such a wide range 

required the use of two different apparatuses for a matter of load capacity and load control accuracy. A 

ShearTrac II direct shear machine from Geocomp was used for normal stresses below 1 MPa while 

application of higher stresses was only possible with a Pro Lab shear machine (see Figure 14a). The 

specimens were encased in metal boxes using high strength plaster (e.g. in Figure 14b), as per revised 

ISRM suggested method (Muralha et al., 2013).  

 

None of the devices could prevent rotation of the upper part of the specimen; however, tracking vertical 

displacements via three sensors placed on the loading plate showed that rotation of the upper wall 

remained below 2 degrees for all surfaces, which was considered acceptable. 

 

FIGURE 14 
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Replicas of the three surfaces were tested under six values of normal stress and four shearing directions in 

order to assess anisotropy of the shear strength. The two shear machines offer different load control: the 

tests under low normal stress were conducted under constant normal force while those under high normal 

stress were conducted under constant normal stress. This difference does not pose any issue for the 

validation of the model as long as the normal stress corresponding to the peak shear strength is clearly 

identified and used in the model. 

 

As indicated in Equations [10] and [11], the residual shear strength can be predicted from the peak shear 

strength and the total sheared area at peak. It is therefore important to assess the capability of the model to 

properly capture surface degradation upon shearing. To do so, some tests have been conducted twice: 

once until the residual state (to obtain the residual strength) and once until the peak, for comparison with 

the model. Table 2 provides a summary of all tests performed. 

 

Table 2: Summary of the experimental program. All tests conducted at shearing direction of 0, 90, 180 

and 270 degrees at a rate of 0.5 mm/s. Tests conducted until residual regime repeated until the peak are 

indicated in bold. CNF: constant normal force, CNs: constant normal stress.  

 Surface 
Test 
type 

Shearing 
direction 
[°] 

S  
JRC=2-4 

M 
JRC = 8-10 

R 
JRC = 16-18 

CNF 

0, 90, 
180, 270 

sno= 0.1 MPa sno= 0.1 MPa sno= 0.1 MPa 
CNF sno= 0.3 MPa sno= 0.2 MPa sno= 0.2 MPa 
CNF sno= 0.6 MPa sno= 0.4 MPa sno= 0.4 MPa 
CNs sn= 1.5 MPa sn= 1.5 MPa sn= 1.5 MPa 
CNs sn= 3 MPa sn= 3 MPa sn= 3 MPa 
CNs sn= 6 MPa sn= 6 MPa sn= 6 MPa 
CNs sn= 1.5 MPa sn= 1.5 MPa sn= 1.5 MPa 
CNs sn= 3 MPa sn= 3 MPa sn= 3 MPa 
CNs sn= 6 MPa sn= 6 MPa sn= 6 MPa 

 

A total of 144 shear tests were conducted.  
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5. Experimental results and validation of the model 

5.1 Experimental results 

This section first presents some of the experimental results before elaborating on the predictive capability 

of the new analytical model. Figure 15 presents the evolution of shear stress with tangential displacement 

for all three surfaces in the reference shearing direction (0°). Looking at the surface represented in Figure 

8 as the bottom wall of the discontinuity, the reference shearing direction, i.e. 0°, corresponds to the top 

part of the discontinuity moving downwards (towards decreasing numbers of the vertical – y - axis). 

The results are consistent with other results reported in the literature with an initial linear response, a peak 

reached after less than 5 mm of tangential displacement and a residual regime reached after 10 to 20 mm.  

 

Figure 15d provides data regarding dilation upon shearing for surface M. For the sake of conciseness, not 

all the data are presented but all results are consistent with typical response of rock joints upon shearing: 

the higher the normal stress, the less dilation.  

 

Figure 16 shows the same experimental results plotted in terms of shear stress over normal stress ratio. 

Again, the results are consistent with typical behaviour reported in the literature (Grasselli, 2006).  In 

particular, for each surface, the gap between the different curves narrows down as shearing progresses.  

 

 

FIGURE 15 

 

FIGURE 16 
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5.2) Validation of the model 

This section focuses on the capability of the model to predict peak shear strength, surface degradation 

upon shearing and residual shear strength.  

 

Figure 17 compares predicted peak shear strength and measured shear strength for all three surfaces (S, M 

and R). Each sub-figure includes the results obtained for four shearing directions (identifiable by the 

symbols) and six normal stresses (identifiable by the magnitude of shear strength). The results show that 

the model can adequately predict the peak shear strength of the discontinuities tested, although the 

predictions seems to be more accurate at high values of normal stress. Figure 17d presents the cumulative 

frequency of relative error defined as 100×(tp-predicted –tp-exp)/ tp-exp. A positive error reflects an over-

prediction of shear strength and a negative value, an under-prediction. Figure 17d shows that one 

prediction is out by a factor of 2 (error just below 100%) but for 50% of the predictions, the relative error 

falls between -10% and 10%, which is acceptable. Figure 18 compares the predicted and measured values 

of apparent friction (ratio of peak shear strength over normal stress) and also shows lines of constant 

relative error. Plotting the results in terms of apparent friction shows that the model tends to under 

estimate the peak shear strength for surfaces M and R. Note that large values of peak shear strength over 

normal stress are typically associated to the tests under low values of normal stresses. The exact reason 

why the model under-estimates the peak shear strength under low normal stress is not totally understood 

at this stage.  

 

As discussed previously, prediction of residual shear strength relies on estimating the extent of sheared 

area. Figure 19 illustrates how increasing the normal stress results in a larger portion of the joint surface 

being sheared. The development of sheared areas is fully consistent with the location of steep facets of the 

original surface R, which is represented in Figure 19d. Note that the model actually shears facets based on 
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their apparent dip angle, which explains why steep facets located at the bottom of a valley are sheared 

(points at 80mm<x<100 mm, 55mm<y<65mm in Figure 19d). For a matter of space, not all details of 

surface degradation analysis are presented here. 

 

FIGURE 17 

 

FIGURE 18 

 

FIGURE 19 

 

In order to provide a more quantitative measure of the model ability to capture surface degradation, the 

difference between experimental surface and predicted surface post shearing was estimated for all 

surfaces and four shearing directions. The results pertaining to surface R (the rougher and hence, the more 

prone to degradation) are presented in Figure 20 in terms of cumulative distribution of differences. Note 

that the surface comparison is made using experimental tests that were stopped just after peak stress was 

reached (tests highlighted in bold in Table 1).  

 

It can be seen that the majority of difference values fall within the range -1.5 mm to 1.5 mm with 

maximum recorded values of 3.2 mm and -4.7mm. Such values are much larger than the measurement 

error (Figure 9) and hence can be considered a reliable representation of the difference between model 

prediction and experiment, rather than a measurement inaccuracy. 

 

Figure 20e shows the spatial distribution of the height difference between model and experiments for one 

test (surface R, sheared under 6 MPa of normal stress along direction 0 degree). The high values of Dz 

seem to correspond to the edge of the specimen, which could be a reflection of local breakage occurring 
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during testing, which results in zmodel> zexp. There is also a clear zone where the model under predicts 

asperity degradation (zmodel-zexp ≈ -2mm, in Figure 20e). As discussed before, this is due to the fact that 

the model shears facets based on their apparent dip angle rather than location in a valley or a peak, which 

is what is normally observed in experiments (Hans and Boulon, 2003). 

 

FIGURE 20 

 

Following the prediction of the peak shear strength and the extent of surface shearing, it is possible to 

estimate the residual shear strength using Equation [11]. Figure 21 shows a comparison of the predicted 

and measured residual shear strength for the three surfaces under six normal stresses and for four shearing 

directions. With most of the data falling on or very close to the 1:1 line, it can be concluded that the 

model can adequately predict the residual shear strength of the surfaces. The maximum values of relative 

error are increased by about 15% compared to the distribution of errors pertaining to the peak shear 

strength. This is not surprising since the error on peak shear strength (Figure 17d) is now combined to 

that made on the sheared surface morphology (Figure 20).  

 

Note that for a matter of space, the values of apparent friction (ratio of residual shear strength over 

normal stress) are not showed here but similar trends than those reported in Figure 18 (i.e. an under-

estimation of the apparent friction by the model) were observed for the residual strength.  

 

FIGURE 21 

 

 

 

 



 27 

5.3) Computational time  

 

Most FEM or DEM numerical models would require computational time of several hours to simulate 

shearing a 3D rough rock surface (see e.g. Lambert et al., 2010). The model presented in this paper can 

provide a reasonable estimate of peak shear strength, a sheared morphology (post-peak) and a residual 

strength is few seconds, which opens the door for stochastic analysis where very large number of 

simulations are required.  

 

In view of applying the model to larger surfaces in future, the evolution of computational time with the 

number of facets constituting the surface was assessed. To that end, the original surfaces (made of about 

65,000 facets) were halved (about 30,00 facets) and doubled (about 120,000 facets). Simulations were run 

under several values of normal stresses. As expected, the more the facets, the higher the computational 

time (see Figure 22a). With the current implementation of the model (in C sharp, running on a computer 

having the following characteristics: Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz, 8GB of RAM), it 

can take up to 30 seconds for a surface made of 120,000 facets (Figure 22b). The wide range of 

computational time for a given number of facets is related to the different values of normal stresses that 

result in different sheared geometry (see Figure 19). In particular, focusing on the largest surface 

(120,000 facets), a clear correlation appears between computational time and number of facets that have 

been sheared (Figure 22b). 

 

FIGURE 22 

 

6. Validation of the stochastic approach for the prediction of discontinuity shear strength  

 

6.1 Example of synthetic surface and distribution of shear strength 
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An example of a random surface using statistics from surface R is displayed in Figure 23. The two 

surfaces are clearly different, yet all surfaces created by the random field model have statistical properties 

corresponding to those of the original surface. Figure 24 shows the distribution of heights and gradients 

of 25 simulations, which fall very close to Gaussian, as assumed. 

 

FIGURE 23 

 

FIGURE 24 

 

Figure 25 shows the experimental results, the deterministic predictions (i.e. semi-analytical shear model 

applied to the original surfaces) and the predictions resulting from the stochastic approach (i.e. shear 

model applied to 100 synthetic surfaces, referred to as stochastic predictions). Note that only the results 

pertaining to surface R are presented, for the sake of conciseness. The surfaces simulated by the random 

field model are different enough to observe a wide range of responses. The difference between the highest 

and lowest shear strength is in the order of 0.5 MPa under a normal stress of 6 MPa (Figure 25a). All 

stochastic responses fall below their deterministic counterpart but it will be demonstrated in a later 

section that this is a function of the correlation length. Focusing on the range of shear strength obtained 

under 6 MPa, Figure 25b shows a well-graded cumulative distribution of peak and residual shear strength, 

from which can be calculated a mean value of shear strength (noted <tp> – for peak strength - or <tres> 

for residual strength).  

 

FIGURE 25 
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6.2 Influence of the number of simulations 

At this stage, it is important to ascertain how the distribution of shear strength evolves with the number of 

simulations. Figure 26 shows that using less than 100 simulations leads to fluctuations in the shear 

strength distributions. In contrast, with more than 100 simulations, changes in the shear distributions are 

negligible. Based on this finding, it was decided to use 100 simulated surfaces, for each prediction, in 

order to obtain reliable results in a reasonable time. 

 

FIGURE 26 

 

6.3 Influence of correlation length and variance of heights  

As discussed in section 4, the sample correlation length varies from trace to trace, posing the question of 

the representativity of the initial dataset: in other words, which trace of the surface do we actually see in 

situ (for example, in a cutting) and is it an adequate representation of the surface? To answer this 

question, it is critical to investigate the sensitivity of the shear strength distribution to the key variables 

used to construct the synthetic surfaces, namely the correlation length q and the variance of height, sz2.  

 

Figure 27 shows how the mean peak shear strength (<tp>) evolves with varying correlation and variance 

of heights. Note that each value of mean was calculated from 100 simulations and 6 different normal 

stresses were imposed on the surfaces. Figure 27a was obtained at constant height variance (equal to 2.8 

mm2) and Figure 27b, at constant correlation length (equal to 27.4 mm). A value of 0.02 MPa was 

arbitrarily chosen as a lower bound for the normal stress. Figure 27a clearly demonstrates that a longer 

correlation length results in a lower peak shear strength, which is explained by the fact that increasing the 

spatial correlation results in a smoother surface. Also very clear is the fact that the effect is more 
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pronounced for low normal stresses: at 0.02 MPa, the relative decrease of shear strength is 60% (from 

0.05 MPa to 0.02MPa) while it is only 3% at 6 MPa, over the range of correlation length considered.  

 

The variance has been found to have an opposite effect: a larger variance yields a higher shear strength 

(Figure 27b). Such observation can be interpreted as follows: a broader distribution of heights (i.e. a 

higher variance) means a rougher surface, which will provide a higher shear strength. Again, the effect is 

more pronounced under low normal stresses. 

 

FIGURE 27 

 

Following the findings of Figure 27, a more detailed parametric study was conducted under a normal 

stress of 0.02 MPa, a value for which the sensitivity to correlation length and variance of height is the 

most pronounced. 25 combinations of q and sz2 were considered, and for each one of them, 100 synthetic 

surfaces were created and the mean peak shear strength was obtained. The (q, sz2, <tp>) data were then 

used to create a contour map of <tp> (by kriging) for varying correlation length and height variance (see 

Figure 28a). The black dots represent the specific (q, sz2) points tested while the contour lines correspond 

to the values of mean shear strength, ranging from a minimum of 0.015 MPa to a maximum of about 

0.110 MPa. Overall, the fluctuations in shear strength are quite modest across the values of correlation 

length and variance tested, except for variances larger than 3 mm2 and correlation lengths lower than 18 

mm (top left corner of the figure).  

 

Interestingly, when superimposing the traces of the original surface R, represented by their actual values 

of (q, sz2) (crosses in Figure 28b), on the contour map obtained in Figure 28a, it appears that only a 

portion of the contour map is relevant for the considered surface. Although the parametric study (Figure 

28a) showed a possible variation of mean shear strength between 0.015 and 0.110 MPa, in case of surface 
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R, the actual values of correlation length and height variance, calculated for all traces, reduces the range 

of mean shear strength to 0.024 - 0.036 MPa (Figure 28b).  

 

FIGURE 28 

 

FIGURE 29 

 

 

Considering now the mean peak shear strength corresponding to each cross of Figure 28b and plotting the 

histograms of these values, it further appears that 53% of the data fall within the range 0.027 MPa to 

0.031 MPa with a mean value of 0.0295 MPa and a standard deviation of 0.0026 MPa (Figure 29). 

Similar outcomes were obtained for surfaces S and M, although not presented here for a matter of 

conciseness. 

 

Figures 28 and 29 suggest that, at least for the surfaces tested here, the uncertainty due to the selection of 

the seed trace is fairly limited (see Figure 29).  

 

6.4 Stochastic modelling of shear strength 

 

6.4.1 Predictions from the statistics of the whole surface 

In this section, the statistics of whole surfaces (S, M and R) were used as an input to the random field 

model (see Table 3). For each surface, 100 synthetic surfaces were created and virtually sheared.  
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Table 3: correlation length and variance of heights corresponding to the dataset of the full surfaces S, M 

and R in the direction of shearing.  

 Surface S Surface M Surface R 

Correlation length [mm] 38.7 26.2 27.4 

Variance of heights [mm2] 2.7 2.3 2.8 

 

Figure 30 shows that the mean value of shear strength (peak and residual) for all three surfaces compares 

reasonably well with the deterministic prediction obtained, for each surface, from the analytical model.  

 

This clearly indicates that creating synthetic surface from the statistics of the whole surface yields 

satisfactory shear strength estimates. The next section will focus on synthetic surfaces created from the 

statistics of a seed trace and the predictions from the stochastic approach will be compared to the 

experimental results. 

 

FIGURE 30 

 

 

6.4.2 Predictions from the statistics of a seed trace 

 

Here, 100 synthetic surfaces were created from a random seed trace of the natural surfaces S, M and R. 

These synthetic surfaces were virtually sheared under six values of normal stress using the semi-

analytical model. For each value of normal stress, the mean value and standard deviation of both peak and 

residual shear strength were then calculated. Figure 31 compares the results of the stochastic modelling to 

the experimental data obtained on the replicas of the three natural surfaces  
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For the smoothest surface (S - Figure 31a), four of the six predictions fall on the 1:1 line and two are 

slightly underestimated. The rougher the surface, the more the approach seems to underestimate the 

strength: three predictions are correct for surface M (Figure 31b) but this falls to two correct predictions 

for surface R (Figure 31c). For the other cases, the shear strength (peak and residual) is underestimated by 

a factor of 2, which means that the prediction is very conservative.  

 

FIGURE 31 

 

 

The under estimation of shear strength is not caused by randomly creating surfaces from information 

available from a seed trace but is related to the quality of the semi-analytical model for shear strength.  

Indeed, Figure 32 clearly shows that the prediction of shear strength made on the original R surface 

closely matches the mean shear strength predicted by the stochastic approach.  

 

FIGURE 32 

 

 

Figure 31 validates the new approach detailed in section 2 and which advocates that there is enough 

information contained in a single trace to create random surfaces and obtain a representative distribution 

of shear strength for the discontinuity. Indeed, the simulated values presented in Figure 31 are all shear 

strength values of surfaces created from the statistics of seed traces only, not full surfaces.  

 

7. Conclusions 
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This paper presents a novel approach that could avoid any up-scaling exercise when estimating the shear 

strength of rock discontinuities by directly using the surface information available at the scale of the rock 

mass.  

 

The first part of the paper, deals with a new semi-analytical model that can predict the peak and residual 

shear strength of rock joints. This mechanistic model is inspired from the work of Huang et al. (2002) but 

has been significantly improved: the model handles real 3D surface, as opposed to 2D idealised ones (e.g. 

saw-tooth) and can predict both peak and residual strength. Also, the high precision in surface 

measurement implies that the facets are much smaller than the asperity size, which brings another level of 

complexity in the model and requires a strategy for progressive degradation. The model only requires the 

3D description of the surface and the material strength properties to run, no calibration is necessary. At 

this stage, only a constant normal stress condition can be applied in the model and tangential 

displacements are not predicted, but this is not a problem for the newly proposed approach since it is 

solely based on strength. A series of direct shear tests were conducted on replicas of three natural 

surfaces, under four shearing directions and under six levels of normal stress. The model was found to 

adequately predict both peak and residual shear strength under the set of conditions tested. However, 

validation was achieved with only three surfaces and more validation work will be conducted in future to 

better ascertain the predictive capability of the model, especially in the range of low normal stress. Unlike 

complex numerical models, this new model runs in a matter of seconds, which is ideal for the stochastic 

analyses that constitute the key point of the newly proposed approach to predict shear strength.  

 

The second part of the paper delves into the random field model required to produce and characterise 

distributions of shear strength. A first analysis conducted with the statistics of whole surfaces showed that 

a minimum number of 100 simulations is recommended to obtain meaningful results. Then, a sensitivity 

analysis was conducted to assess the influence of correlation length and height variance on the 
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distribution of shear strength. It was found that correlation length and variance of heights have opposite 

effects and that these effects are more relevant under low values of normal stress. Finally, peak and 

residual shear strengths of the three natural surfaces were predicted using the new approach. It was found 

that for high stresses and smooth surfaces, the predicted values of mean shear strength tend to match the 

experimental data but as the surface gets rougher and the normal stress drops, the mean values of 

predicted shear strength tend to fall below the measured values. However, it was showed that this under-

estimation can be due to the semi-analytical model for shear strength rather than the fact that synthetic 

surfaces were used. The significance of this research is that predicting the shear strength of a 

discontinuity could be achieved from information gathered directly at the discontinuity scale without 

having to resort to small specimens and hence to have to account for the scale effect. The method has not 

yet been applied to large in-situ discontinuities, as this requires developments that are beyond the scope 

of this paper. Indeed, it is critical to account for possible opening, filling, weathering and persistence of 

discontinuities. 
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Appendix A: Example of calculation of peak shear strength.  
 
This example focuses on the last two decrements (#154 and # 155) of calculation of shear strength for the 

simplified surface showed in Figure A.1. Coordinates of the points making the geometry are given in 

Table A.1. Note that the dimensions of the surface (6 m in the X direction by 1 m in the Y direction) and 

the material properties (Table A.2) have been chosen to simplify the example and are not necessarily 

representative of the surfaces tested in this research. Shearing occurs along the X axis with the top wall 

moving from left to right. As a consequence, the gradient of the facets, as represented in Figure A.1, 

coincides with the apparent dip bapp_i. Also, in order to simplify this example, the facets are not triangular 

but rectangular, which does not change the mechanics of the model. So, there are only 6 facets in the 

surface presented.  

 

 
 

(a) (b) 

Figure A.1. Simplified surface geometry for an estimate of peak shear strength. The surface is 

made of 6 facets identified in the initial geometry (a). (b): Perspective view of the initial geometry 

showing the rectangular facets. Width of the surface (in Y direction): 1m. 
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On the initial geometry, facets 1 and 4 are the steepest at 41.99°. The model sets the starting value of b* 

at 41.9° (at the nearest 0.1° below the steepest facets), making facets 1 and 4 active from decrement #1.  

 

Table A.1. Coordinates of the points of the initial geometry. 

Point A B C D E F G 

X [m] 0 1 2 3 4 5 6 

Y [m] 0 0.9 1.05 1.5 2.4 2.7 2.7 

 

At decrement 154, b* has reduced to 26.6° (153 decrements of 0.1°). Following the progressive facet 

modification strategy described in section 3.5, facets 2 and 5 have steepened and have become active. The 

apparent dip of all facets are reported in table A.3 

 
Table A.2: Dimensions, material properties and load.  

Surface dimensions  
lx [m] 6 
ly [m] 1 

Material Parameters 
fb [°] 28 
f [°] 35 
c [MPa] 0.2 

Normal stress 
sn [MPa] 0.2 
Fmacro [kN] 1200 

 

 

So, at decrement #154, 4 facets are active (Ncf = 4) and the total force applied to the discontinuity (1200 

kN, see Table A.1) is sheared between the 4 facets. Consequently, flocal_i is equal to 300kN and slocal_i is 

0.3 MPa. Using Equations [7] and [6] and the materials properties reported in Table A.2, the forces 

required to shear each facet at its base (fshear_i) and to slide over it (fsliding_i) are found to be 410kN and 422 
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kN, respectively. Since fshear_i < fsliding_i, shearing takes place. This means that b* is further reduced to 

26.5°, which also becomes the new apparent dip (bapp_i) of all active facets.  

 

As highlighted in section 3.5, changing the apparent dip of facets 1, 2, 4 and 5 also affects the dip of 

facets 3 and 6 (see values in Table A.4). In particular, we now have: bapp_3 = 26.69° ≥  b*=26.5°, meaning 

that facet 3 is now active and that Ncf=5. Note that the apparent dip of facet 3 can be checked from the 

coordinates of point D in Figure A.1 (that still prevail at decrement 155), and the apparent dip of facets 1 

and 2 at decrement 155 (26.5°). 

 

Table A.3: Model variables at decrement 154. 

bapp_i [°] 26.6 26.6 24.23 26.6 26.6 8.52 
b* [°] 26.6 
Ai [m2] 1.12 1.12 1.10 1.12 1.12 1.01 
Aip [m2] 1 1 1 1 1 1 
Facet active? Yes Yes No Yes Yes No 
Ncf (# of active facets) 4 
flocal_i [N] [Eq. 4] 300000 300000 0 300000 300000 0 
slocal_i [Pa] [Eq. 5] 300000 300000 0 300000 300000 0 
fshear_i [kN] [Eq. 7] 410 410 0 410 410 0 
fsliding_i [kN] [Eq. 6] 422 422 0 422 422 0 
Outcome Sheared Sheared n/a Sheared Sheared n/a 

 

Table A.4: Model variables at decrement 155 

bapp_i [°] 26.5 26.5 26.5 26.5 26.5 11.70 
b* [°] 26.5 
Ai [m2] 1.12 1.12 1.12 1.12 1.12 1.02 
Aip [m2] 1 1 1 1 1 1 
Facet active? Yes Yes Yes Yes Yes No 
Ncf (# of active facets) 5 
flocal_i [N] [Eq. 4] 240000 240000 240000 240000 240000 0 
slocal_i [Pa] [Eq. 5] 240000 240000 240000 240000 240000 0 
fshear_i [kN] [Eq. 7] 368 368 368 368 368 0 
fsliding_i [kN] [Eq. 6] 336 336 336 336 336 0 
Outcome Sliding Sliding Sliding Sliding Sliding n/a 
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The local normal stress drops from 0.3 MPa at decrement 154 to 0.24 MPa at decrement 155. As a result, 

the forces required to shear each facet at its base (fshear_i) and to slide over it (fsliding_i) become 368kN and 

336kN, respectively. At that stage, the force required to slide over the facets is less than that required to 

shear them, which marks the end of the iterations.  

 

The peak shear force is computed as the sum of the sliding force over all active facets at the last 

decrement: 

𝑓Fc*h =�𝑓Z',[,\]_,

T8U

,j4

= 5 ∙ 336 = 1840	𝑘𝑁 

The peak shear strength is calculated as: 

tp-predicted = fpeak /Atot  = 1.840	MN/6	m2	~	0.31	MPa 

The residual shear strength is obtained by the following equation: 

 

𝜏dcZ3Fdc[,)nc[	 =
𝑓Fc*h − 𝑐 ∙ 𝑁)V ∙ 𝐴,F

𝐴n(n
 

where Ncf = 4 (facet #3 became active but was not actually sheared). So we get:  

𝜏dcZ3Fdc[,)nc[ =
4.��3�.A∙�∙4

�∙4
= 0.17	𝑀𝑃𝑎 

 

Figure A.2 shows the final surface geometry after all steps of progressive shearing. 



 46 

 

Figure A.2. Modified geometry at decrement 155 (final decrement). Dashed line shows the initial 

geometry, for comparison.  
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Appendix B: derivation of correlation length q 
 
 
Consider points (x, y, z) of a surface and let us define z(x,y) as the surface height at point (x, y).  
 
The directional gradients are defined as: 
 

𝑖� =
�(�5��,�)3�(�,�)

��
     [B.1] 

 

𝑖� =
�(�,�5��)3�(�,�)

��
     [B.2] 

For the sake of consistency with the equation presented in the core of the paper, let us consider one 
direction (either x or y) and drop the x or y subscript.  
 
Using the definition of the gradients above, their variance 𝑣𝑎𝑟[𝑖] can be expressed as: 
 

𝑣𝑎𝑟[𝑖] = 	𝜎,A = x 4
��
z
A
∙ 𝑣𝑎𝑟[𝑧(𝑥 + Δ𝑥, 𝑦) − 𝑧(𝑥, 𝑦)]   [B.3] 

 
where si is the standard deviation of gradients. Equation [B.3] then becomes:  
 

𝜎,A = x 4
��
z
A
∙ [2 ∙ 𝜎�A − 𝑐𝑜𝑣[𝑧(𝑥 + Δ𝑥, 𝑦), 𝑧(𝑥, 𝑦)]   [B.4] 

 
where cov is the covariance and sz is the standard deviation of heights, that are related by: 

𝑐𝑜𝑣[𝑧(𝑥 + Δ𝑥, 𝑦), 𝑧(𝑥, 𝑦)] = 	𝜎�A ∙ 𝜌(Δ𝑥)   [B.5] 
 
Combining equations [B.4] and [B.5], we get:  

𝜎,A = 	2 x7�
��
z
A
∙ [1 − 𝜌(Δ𝑥)]    [B.6] 

 

Equation [B.6] can be reformulated as:  

𝜌(Δ𝑥) = 1 − 4
A
∙ x79∙��

7�
z
A
      [B.7] 

 

A Gaussian correlation formulation was chosen for the correlation coefficient, which reads  

 

𝜌(𝑑) = 𝑒3w∙x
q
yz
{

      [B.8] 
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 Combining equations [B.7] and [B.8], in which the condition d=Dx (where Dx is the spatial increment 

along the surface) is imposed, yields an estimate the correlation length q  which depends on the standard 

deviation of the height and gradients: 

 

𝜃 = Δ𝑥 ∙ �
3w

'\�43�{x
��∙�9
��

z
{
�
      [B.9] 
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Figure 1: photograph of a fractured rock mass in 

Newcastle, NSW, Australia (photograph by O. Buzzi).  
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Figure 2: Key steps of the new stochastic approach to predict shear strength of natural discontinuities. 
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Figure 3: Flow chart representing the key steps of the analytical model for shear strength. 
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Figure 4: Example of triangulated surface. Surface dimensions are approximately 

10 cm per 10 cm. The surface contains one data point every 1.5 mm in both 

directions.  
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(a) 

 

(b) 

Figure 5: (a): representation of a dilating interface with two active facets remaining in contact. The 

vertical force applied to the discontinuity Fmacro is balanced by two equal forces flocal_i, applied at the 

two facets in contact. (b) 2D representation of the interface and two active facets being either sheared 

at their base or slided upon. The facet area is noted Ai and the area projected on the xy plane is noted 

Aip.  
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Figure 6: (a) Initial 2D profile of the interface showing 6 facets (F1 to F6). (b) Sheared profile 

showing steps resulting from local shearing. (c) Corrected profile with steepening of facets 2 and 5. 

(d): Profile after N iterations and progressive shearing. Facets 1 to 5 have been progressively 

sheared and their apparent dip has been reduced. As a result of the step correction, facet 6 has 

steepened. At this stage, sliding predomines and iterations stop. 
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Figure 7: evolution of the total shearing stress (defined as x∑ 𝑓Z',[,\]_,
T8U
,j4 𝐴n(n£ z) and total sliding 

stress (defined as x∑ 𝑓Zbc*d_,
T8U
,j4 𝐴n(n£ z) as b*reduces from maximum value to final value (Note that 

one marker is plotted every ten values). Surface sheared under a normal stress of 0.1 MPa. 
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(a) Surface S (b) Surface M 

 

Figure 8: Representation of the three surfaces (S, 

M, R) used to validate the semi analytical model 

for shear strength and the new stochastic 

approach for the prediction of shear strength.  

                           (c): Surface R 
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(a) 

 

(b) 

Figure 9: Differences in height between two successive measurements of surface M by 

photogrammetry. (a): map of the differences, (b): histogram of differences.  
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Figure 10: histograms of heights of the points 

constituting surfaces S (a), M (b) and R (c). The 

continuous line corresponds to a Gaussian 

distribution calculated from the mean and 

standard deviation of the dataset. 
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Figure 11: histograms of asperity gradients in the x 

direction for surface S (a), M (b) and R (c).  
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Figure 12: sample mean value (a) and standard deviation (b) of gradients along all traces in the x 

direction. The dashed lines represent the average of the sample means in (a) and of the sample standard 

deviations in (b), calculated in the x direction. Data pertain to surface R. 
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Figure 13: Sample correlation length (q) of each trace along directions x and y for surface R. The 

dashed lines represent the average correlation length of the sample over the whole surface along 

directions x and y.  
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(a) 

 

 

(b) 

Figure 14: (a): View of the Pro Lab shear machine load capacity of 100 kN. (b): View of the low part 

of a rock joint specimen encased in one of the steel boxes with plaster. 
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(a) (b) 

 

 

(c) (d) 

Figure 15: Evolution of shear stress t with tangential displacement ds for surfaces S (a), M (b) and R (c) 

under 6 different normal stress. (d): evolution of normal displacement dn with tangential displacement ds 

during shearing for surface M under 6 different normal stress. Tests conducted in the shearing reference 

direction (0°). 
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(a) (b) 

 

Figure 16: Evolution of shear stress over normal stress 

(t/sn) with tangential displacement ds for surfaces S (a), 

M (b) and R (c) under 6 different normal stress. Tests 

conducted in the shearing reference direction (0°). 

 

(c) 
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(a) (b) 

  

(c) (d) 

Figure 17: Comparison of predicted peak shear strength (tp-predicted) and measured peak shear 

strength (tp-exp) for surface S (a), M (b) and R (c). The continuous line has a 1:1 gradient. (d): 

cumulative distribution of relative error for all three surfaces, four directions and six normal 

stresses. The relative error is calculated as 100×(tp-predicted –tp-exp)/ tp-exp. 
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(a) (b) 

 

Figure (18): Comparison of predicted peak 

shear strength over normal stress  (tp-predicted 

/ sn) and measured peak shear strength over 

normal stress (tp-exp/ sn) for surface S (a), M 

(b) and R (c). The continuous line has a 1:1 

gradient and the dashed lines provide values of 

relative error, calculated as 100×(tp-predicted –tp-

exp)/ tp-exp. 

(c) 
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(a) (b) 

  

(c) (d) 

Figure 19: Progressive surface degradation upon shearing predicted by the model under increasing 

level of normal stress: (a): 0.1 MPa, (b): 1.5 MPa and (c) 6 MPa. The black pixels represent the 

sheared facets. (d): representation of the bottom wall of the original R surface. All dimensions in mm. 

Surface R sheared in the reference direction (0°), i.e. downwards along Y direction. 
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(a) (b) 

  

(c) (d) 

 

(e) 

 
Figure 20: Cumulative distribution of 
difference of height (z) between the 
model predictions and the 
experiments post peak for surface PR 
under 6 values of normal stress. (a): 
at 0 degrees, (b): at 90 degrees, (c): at 
180 degrees, (d): at 270 degrees. (e) 
map of differences in heigh (zmodel-
zexp) for surface R under 6 MPa 
sheared at 0 degrees (along y axis, 
from top to bottom) 



 69 

 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 21: Comparison of predicted residual shear strength (tres-predicted) and measured residual 
shear strength (tres-exp) for surface S (a), M (b) and R (c). The continuous line has a 1:1 
gradient. (d): cumulative distribution of relative error for all three surfaces, four directions and 
six normal stresses. The relative error for the residual shear strength is calculated as 100×(tres-

predicted –tres-exp)/ tres-exp 
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(a) (b) 

Figure 22: (a) evolution of computational time as a function of the total number of facets constituting the 

discontinuity surface. (b): Evolution of computational time as a function of total number of sheared facets 

for the largest surface under different normal stress. 
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(a) (b) 

Figure 23: Original surface R (a) and an example of a simulated surface (b) using the random field 

model and a correlation length of 27.4 mm and a variance of heights of 2.8 mm2.  
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Figure 24: Distribution of gradients (a) and surface height (b) of 25 synthetic surfaces.  
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Figure 25: (a) Peak and residual failure envelopes for surface R sheared along direction x. The dots 

represent experimental values, the black lines correspond to the prediction on the initial surface 

(referred to as deterministic) and the grey lines forming bands correspond to the predictions on the 

virtual surfaces (referred to as stochastic). (b): Cumulative relative frequency of peak and residual 

shear strength under a normal stress of 6 MPa from which mean shear strength and standard 

deviation are calculated. 
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Figure 26: effect of the number of simulations on the cumulative distribution of predicted peak 

shear strength (tp-predicted) for surface R sheared along direction x under a normal stress of 0.1 MPa 

(a) and 6 MPa (b). Continuous lines correspond to 10, 30 and 50 simulations while dashed lines 

correspond to 100, 600 and 1000 simulations.  
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Figure 27: Sensitivity of mean peak shear strength <tp> to the correlation length q at constant height 

variance sz2 (equal to 2.8 mm2) (a) and to the variance of heights sz2 at constant correlation length q 

(equal to 27.4 mm) (b). Random field statistics are obtained form surface R. Synthetic surfaces were 

sheared under 6 different values of normal stresses along direction x. 
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(a) 

 

(b) 

Figure 28: (a): Contour plot of mean peak shear strength (<tp>) as a function of correlation 

length q and variance of height (sz2), for 100 synthetic surfaces sheared under a normal stress 

of 0.02 MPa. The black dots represent the combinations of q and sz2 tested. The contours map 

was obtained by kriging and using the <tp> values obtained for each (q, sz2) combination. 

Contour lines are plotted at 0.005 MPa increments. (b): Plot of traces of surface R, represented 

by their actual combination of correlation length and variance of height (crosses) in the space 

of the contour map defined figure in 26a.  
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Figure 29: Histogram of mean peak shear strength <tp> where each value is calculated from 100 

simulated surfaces created from each combination of (q, sz2) represented by the crosses in Figure 28b.  
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Figure 30: Comparison between the mean value 

of shear strength, obtained by the stochastic 

approach, and deterministic predictions obtained 

from applying the semi-analytical model to 

surfaces S (a), M (b) and R (c). Shearing was 

done under normal stress values of 0.1, 0.5, 1, 3 

and 6 MPa. Full symbols: peak shear strength, 

empty symbols: residual shear strength. The 

error bar shows the standard deviation 

associated to the mean value of shear strength. 
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Figure 31: Comparison of mean peak and residual 

shear strength resulting from stochastic modelling 

and experimental shear strength obtained for 

surface S. Full symbols: peak shear strength, 

Empty symbols: residual shear strength. 100 

surfaces simulated from surface S (in (a) with sz2 = 

3.21mm2 and q=40.1 mm), from surface M (in (b) 

with sz2 = 3.82mm2 and q=26.2 mm) and from 

surface R (in (c) with sz2 = 4.81 mm2 and q=26.6 

mm). Synthetic surfaces were virtually sheared 

under 6 values of normal stress. 
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Figure 32: Comparison of mean peak and residual shear strength resulting from stochastic modelling of 

100 synthetic surfaces and shear strength prediction made from the original surface R. Full symbols: peak 

shear strength, Empty symbols: residual shear strength. 100 surfaces simulated using sz2 = 0.51 mm2; 

q=13.3 mm and sheared under six different values of normal stress. 
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